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Abstract-A revised form of the low-Reynolds-number K--E turbulence model is presented that aptly 
describes recirculating (separated and reattached) flows. The revised model is well suited for low to 
moderate Reynolds numbers. It is applied to two-dimensional channel flows, flow over a backward facing 
step, and flow over a forward facing step to calculate flow fields and surface heat or mass transfer rates. 
Results from the present model are in better agreement with experimental data than other low-Reynolds- 
number models. Asymmetric flow through an array of rectangular cylinders, as well as in a two-dimensional 

symmetric sudden expansion duct, is found numerically and supported by experimental results. 

INTRODUCTION 

THE GOAL of the present study is to model turbulent 
flow in separated regions, and to show the instability 
of flow in a symmetric geometry using a numerical 
method. The flow field in many engineering systems 
contains separation, reattachment, and recirculation 
regions. The heat transfer augmentation that occurs 
with separation and reattachment is common to many 
engineering devices and the prediction of separated 
flow and the subsequent heat transfer is of practical 
importance. Present turbulence models do not 
adequately predict separated flows and heat transfer. 
The heat transfer rates near the reattachment point 
are strongly affected by separation, as they increase 
rapidly and then decay more slowly than those of 
ordinary boundary layer flows. 

There are two dominant factors in the near wall 
region. One is the local low turbulent Reynolds num- 
ber effect ; the laminar viscosity becomes more impor- 
tant as one approaches the wall. The other factor close 
to a wall is the damping of the turbulent fluctuations 
in the direction normal to the wall. 

Generally, there are two numerical methods for 
considering near wall regions ; wall function methods 
and low Reynolds number turbulence models. The 
high Reynolds number K-E model is not generally 
applicable to near-wall flows because of the low tur- 
bulent Reynolds number effects and the wall damping 
effects. To alleviate these problems, the high Reynolds 
number turbulence model uses a wall function which 
connects the surface boundary to a point in the fully 
turbulent region. The wall function is restricted to 
situations where a universal law (i.e. law of the wall) 
exists. The wall functions and high Reynolds number 
turbulence model cannot properly evaluate separation 
flows. The low-Reynolds-number K-E model adopts 

the empirical functions off,, f,, and f2 (see equations 
(2) and (4)) in the near wall region with fine grids. 
The functions are derived to give results which are 
similar to the wall function in the high Reynolds num- 
ber turbulence model. Generally, most of the flow field 
is not strongly dependent on the near wall turbulence 
model. However, the heat transfer rate on the wall is 
very sensitive to the model because the main tem- 
perature difference (up to 50%) is located in the thin 
near-wall region and the heat must transfer through 
the viscous sublayer by molecular diffusion. It is 
difficult to predict adequately the heat transfer rates 
along the wall even with a satisfactory prediction of 
the flow field, hence the numerical model in this near 
wall region is important for heat transfer. Unfor- 
tunately, the low-Reynolds-number turbulence 
models seem to predict heat transfer rates that are too 
high in the reattachment region after separation, as 
shown by Chieng and Launder [ 11. Inside the recir- 
culation zone, the velocities are low, yet the level of 
turbulent kinetic energy is relatively high. This results 
from diffusion/transport from the bordering shear 
layer, where high turbulence is generated. However, 
the dissipation of turbulent kinetic energy is small in 
this zone because of large eddy motions rather than 
small eddy motions. Thus, the near wall zone in the 
recirculation bubble (close to reattachment) has high 
turbulence levels and therefore high heat transfer 
rates. 

The local turbulent Reynolds number decreases 
close to the wall. The molecular viscosity becomes 
important in the balance of turbulent kinetic energy 
and dissipation. The low-Reynolds-number tur- 
bulence model, to calculate flow in the near wall 
region, was originally proposed by Jones and Launder 
[2, 31. The wall proximity is accounted for by mod- 
ifying the original high Reynolds number K--E model. 
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NOMENCLATURE 

II channel width L’ upstream channel mean velocity 

cr skin friction coefficient U;:, free stream velocity 
C,,, C,,, C’,, constants in turbulence model u, fluctuating velocity 

(equation (2) and Table 1) friction velocity, 4x/p 
D, E additional terms in turbulence model, ,“; dimensionless velocity, u/u, 

D =8--c. W, W, channel heights in sudden expansion 

D, hydraulic diameter in duct ducts 

f I coefficient of the generation term of a x, 2’ Cartesian coordinates 

(equation (2) and Table 1) & coordinate in normal direction on the 

fi correction function of the destruction wall 

term of E (equation (2) and Table 1) XP positron along the periphery of the 

.A: damping function to account for cylinder 
laminar viscosity to pet (equation (4) XR reattachment length (separation zone 
and Table 1) size) 

G production of K (equation (5)) X* dimensionless length scale, (.x - xR)/xR 
H step height in backward facing step ‘+ dimensionless distance, UJ/V. 

flow and sudden expansion duct 
h,, h2 channel heights in converging step flow Greek symbols 

K acceleration parameter, 6 boundary layer thickness 

~(dU,,/d.u)(l/U;) E, 8” dissipation rate of turbulent kinetic 

LW size of wake behind a cylinder (in energy (a0 = E-D and equation (6)) 

streamwise direction) K turbulent kinetic energy, im 

NU Nusselt number lc+ dimensionless turbulent kinetic 

P pitch of an array of cylinders energy, it/u,’ 
Re(L) Reynolds number based on the IJ dynamic viscosity 

characteristic length L, CJL/t /4 turbulent viscosity 

R, turbulent Reynolds number, K~/V E \? kinematic viscosity 

RY turbulent Reynolds number, J&J/V /, density 
S slit width in an array of rectangular QK> OE turbulent Prandtl numbers for 

cylinders diffusion of K and c: 
Sh Sherwood number r, wall shear stress. 

St Stanton number 
T time mean temperature Subscripts 

T, free stream temperature i, j, k tensor notation 
U, V time mean velocity in Cartesian t turbulence value 

coordinates V value at outer edge of viscous sublayer 

u, centerline velocity W wall value. 

Later, several versions of the model were made and 
improved for various purposes. There is still inad- 
equate prediction of certain flows, especially in recir- 
culation regions. The present model is similar to that 
of Jones and Launder’s model [2, 31, but the detailed R 
forms are quite different. The model is tested on fully 
developed two-dimensional turbulent channel flows where 
and applied to separated flows over steps. A better 
prediction is obtained by the present model for the 
cases considered. 

TURBULENCE MODELING 

The governing equations for the two-dimensional 
K-C model can be written in the following form : 

G=p($+z)z 

(3) 

(4) 

(9 
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Here K is the turbulent kinetic energy and E is the 
isotropic dissipation rate of the turbulent kinetic 
energy. 

Table 1 summarizes the constants and functions, 
including additional terms D and E, for several low- 
Reynolds-number K--E models. 

K equation 
Most low-Reynolds-number K--E models have an 

extra term (U in Table 1) which is chosen to give 
the turbulent dissipation rate near the wall boundary. 
Those models set E,, = 0 (E,, = E-D) on the wall 
boundary, although E is not really zero. The present 
model uses D = 0 as in the original high Reynolds 
number turbulence model. The reason will be dis- 
cussed later. 

E equation 
The modeling of the E equation comes from an 

exact form of the Navier-Stokes equation where the 
unknown turbulence correlations are approximated 
by the known terms. The isotropic dissipation rate E 

is defined as 

au: au: 
E=Vdx/dx/ (6) 

in the case of homogeneous turbulence. The low- 
Reynolds-number turbulence models usually solve 
for the modified dissipation rate E,, ( = E-D), which 
is assumed zero at the wall boundary, since it is com- 
putationally advantageous as discussed by Jones and 
Launder [2]. The difference is presented by the D term 
in the K equation. The solution of the E,, equation in 
those models is not the real dissipation rate and cannot 
be compared with the experimental data, even if E,, 

might be close to E except near the wall boundary. The 
E,, values increase very quickly from zero near the wall 
to match E values. Many grid points are needed near 
the wall boundary to follow this rapid variation. It 
will not be possible when the viscous sublayer is thin 
resulting from high velocity, because the prediction 
requires several grid points in the viscous sublayer. 
Reynolds [4] and Lam and Bremhorst [S] used a wall 
boundary condition 

a% 
El, =V$ 

instead of Q, = 0 and did not include additional terms 
in the K and E equation. When using E, the gradient of 
the dissipation rate can be modeled to zero because 
Jones and Launder [2] showed that 

near the wall and the turbulent kinetic energy was 
given by 

K = K,. ' 0 
2 

Y” 

empirically in the viscous sublayer. So, 

a& 
y,= 0 

can be achieved close to the wall. This boundary con- 
dition is selected for computational advantages since it 
models a physically realistic situation. This boundary 
condition was also used for an algebraic stress model 
by Hanjalic and Launder [6]. 

In a separated flow, reattachment and recirculation, 
the numerical mode1 usually predicts a turbulent vis- 
cosity near the wall that is too high and a viscous 
sublayer that is thin. Hence, a high heat transfer is 
predicted. Three additional terms were adopted to 
increase the dissipation rate near the wall (E in Table 
1). The first two terms in S, (E term in Table 1) are 
related to regions near the wall (within the buffer 
layer) and diminish in the fully turbulent region. The 
additional empirical terms are added to account for 
the nonequilibrium dissipation processes. These terms 
help by adjusting the turbulent dissipation rate from 
the fully turbulent region to the viscous sublayer. The 
last term is adopted from Yap [7] which is a correction 
term of non-homogeneous turbulent flow and gives a 
better prediction of heat transfer rate near the re- 
attachment point. The coefficients of these terms are 
usually chosen by computational optimization. All 
these terms should diminish in fully turbulent regions 
to match the basic high-Reynolds-number K-C 

model. 

The low-Reynolds-number model adopts a damp- 
ing function f, to account for the laminar viscosity 
p to the turbulent viscosity pLt at the low turbulent 
Reynolds number near the wall (viscous sublayer and 
buffer zone). 

Pate1 et al. [8] reviewed several low-Reynolds- 
number K-E models and showed that the Lam and 
Bremhorst [5] model (abbreviated to LB hereafter) 
gave the best approximation with experimental data. 
Recently, Xu and Yang [9] also reviewed the low- 
Reynolds-number K-E models for turbulent wall jets, 
and argued that the NH model [lo] was in the best 
agreement. However, these two models contain R, or 
y’ in the correction equation which can be chosen 
arbitrarily from two different length dimensions in a 
complex geometry (e.g. a right angle corner). The 
turbulent structure in the recirculation zone or near 
the reattachment zone is different from that in normal 
boundary layer flow (i.e. different log-law slope and 
viscous sublayer thickness). The coefficient off, in the 
NH model, which is equivalent to the Van Driest 
damping, would be changed in the recirculation zone 
or near the reattachment point. The f, would be best 
applied using a function of R,, R,, and y+. However, 
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the present_/, is modeled by using the turbulent Reyn- 
olds number, R,, from the channel and step flow exper- 
imental data in the near wall region because R, does 
not have a physical length dimension. 

The coefficients included in the differential equa- 
tions could depend on the local turbulence Reynolds 
numbers. The coefficient,f,, of the generation term of 
E, is set at 1 as in the high Reynolds number model, 
and the corresponding generation of E in low Reynolds 
number flow is considered in additional empirical 
terms of E equation (E term). Thef, is a function which 
corrects the destruction term of E in low turbulent 
Reynolds number flow. The present model adopts the 
function of Chien’s model [l l] initiated by Hanjalic 
and Launder [6]. This term goes quickly to a high 
turbulence form becausefi rapidly approaches 1 with 
increasing R,. 

SOLUTION OF THE EQUATIONS 

The elliptic partial difference equations have been 
solved for two dimensional steady flow conditions 
using the SIMPLER algorithm of Patankar [12]. This 
program uses staggered and nonuniform grids which 
give a fine mesh in the near wall region. Inlet con- 
ditions are selected from available experimental data 
in a given geometry, or they are obtained from the 
well-known flat plate flow data of Klebanoff [13] or 
the two-dimensional channel flow data of Laufer [ 141. 
The first several grid points are located within the 
viscous sublayer in all cases. The boundary conditions 
for turbulent kinetic energy K and the gradient of 
dissipation rate E are set to zero at the wall ; the ration- 
ale for this was given in the previous section. 

NUMERICAL CALCULATION FOR SAMPLE 

PROBLEMS 

Two-dimensional channelflow 
Two-dimensional channel flows are considered as a 

test case. The coefficients of the present model are 
optimized from the experimental data of the channel 
flow studied by Laufer [14] and Eckelmann [15]. The 
numerical results are compared with those of the other 
models in Table 1. The skin friction coefficients (Table 
2) from the other models predict values higher than 
the experimental data because velocity distributions 
overshoot. Logarithmic velocity profiles from the 

other models are underpredicted (Fig. l(a)). These 
features also are shown at a higher Reynolds number, 
24 000, with Laufer’s data [ 141. The present model also 
more accurately predicts the dimensionless turbulent 
kinetic energy K+ (Fig. 1 (b)). 

Downstream of a backwardfacing stepjow 
A two-dimensional backward facing step flow is a 

simple recirculation flow in which separation occurs 
at a tied point, the edge of the step. The heat transfer 
rate in the recirculation region near the reattachment 
point is much higher than that in normal boundary 
layer flow. This results from a high turbulence level 
(turbulent diffusion coefficient) due to the large length 
scale motion of the shear flow which generates high 
turbulent kinetic energy and reduces the dissipation 
rate. 

Launder [16] showed the numerical results from 
several turbulence models for the downstream region 
of an abrupt pipe expansion. He shows how much the 
Nusselt numbers scatter from experimental data in 
separation and reattachment flow. Gooray et al. [17] 
tried to solve this problem using a two-pass procedure 
with a standard high Reynolds number K--E model in 
recirculation zone and a low Reynolds number IC--E 
model downstream of the reattachment point. They 
got a better solution than using only one model ; how- 
ever, it could be too complicated in general cases and 
requires much computational time. Amano [18] used 
a near-wall three-layer model which showed good 
agreement with experimental data. Recently, Ciofalo 
and Collins [19] used an improved wall function treat- 
ment and got a good heat transfer rate prediction in 
single step flow. The distance to the reattachment 
point, however, was significantly shorter than that 
found experimentally. Prud’homme and Elghobashi 
[20] used a full Reynolds stress model and Launder 
[16] showed that the algebraic stress model was better 
than the K-E model. Again, these models would 
require much more computational time because they 
have more differential equations to solve. 

The reattachment length (defined from the sep- 
aration point to the reattachment point) is the most 
representative parameter in a backward-facing step 
flow because all flow velocities and temperature fields 
relate to this value. The reattachment lengths are 
shown in Table 3 for the numerical predictions and 
the experimental result (Vogel and Eaton [21]). The 
other models predict short reattachment lengths. 

Table 2. Skin friction coefficients for the two-dimensional channel flow: (C,/2) = (~,,/pUf ) 

Re(H) Experiment LS NH LB Pr 

5600 2.57 x lo-‘t 3.29 x lo-’ 3.31 x 1o-3 3.50 x 1om3 2.67 x 10-l 
8200 2.57 x IO-? 3.23 x lo-’ 3.14 x 10-j 3.35 x 10m3 2.59 x lo-” 

24 600 1.90 x lo-‘t: 2.58 x 10m3 2.45 x 10-j 2.65 x lo-’ 2.18 x 1om3 

t Eckelmann [15]. 
1 Laufer [14]. 
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FIG. 1. Comparison of results for two-dimensional channel flows with different models. (a) Logarithmic 
velocity profiles at Re(b) = 5600. (b) Dimensionless turbulent K--E profiles at Re(b) = 24 000. 

When the streamline curvature effect, proposed by 
Leschziner and Rodi [22], is considered in the present 
model, the reattachment length is slightly different 
and changes in the wrong direction. 

The Stanton number profiles on the bottom test 
plate are shown in Fig. 2 for the different models. The 
NH and LB models have somewhat unusual predic- 
tions, especially near the reattachment point (deter- 
mined by zero velocity in the mainflow direction at 
the closest grid point to the wall). This may result 
from their f, functions including y+ or R,. The LS 
model has a high peak value near the reattachment 
point. This peak for the LS model [23] (improved 
version of the JL model [2, 31) was also indicated by 
Chieng and Launder [I] for sudden expansion pipe 
flow. All maximum Stanton numbers (including those 
from experimental data), except in the NH model, 

occur slightly upstream (about 0.1 - 0.2H) of the 
reattachment point. However, pressure coefficients on 
the wall for the models are in good agreement with 
the experimental data. This implies that the heat trans- 
fer rate on the wall is much more sensitive to the near 
wall model than the pressure coefficient. 

Velocity and temperature profiles are shown in Fig. 
3. The overall results agree very well with experimental 
data [21] except for the far downstream recovery 
region in which the numerical predictions do not 
recover so quickly to the ordinary boundary layer flow 
as in the experiment. 

Forward facing step (strong streamwise acceleration) 
Flows in a converging nozzle and over a turbine 

blade are examples of accelerating flow. Flow over a 
forward facing step is an example of a strong acce- 

Table 3. Reattachment lengths for the backward facing step at I&(H) = 28 000 

X,iff 

Exp. [21] LS 
_ 

6.66 5.5 

NH LB Pr Curvature [22] 

5.9 5.5 6.3 5.9 
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FIG. 2. Stanton number profiles for backward facing step flow at Re(H) = 28 000 and S/H = 1.1. 

0.5 

(a) 
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T-T_(OC) 

FIG. 3. Backward facing step flow at Re(H) = 28 000 and 6/H = 1.1. Comparison of present model with 
experiments of Vogel and Eaton [21]. (a) Mean velocity profiles. (b) Temperature profiles. 
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Nu 

Nu 

FIG. 4. Nu(D,) distributions on the top wall for forward facing step flow at Re(D,) = 18 000 with various 
step heights. (a) hJh, = 0.936. (b) h,/h, = 0.667. (c) hJh, = 0.496. 

lerating channel flow due to a sudden reduction of the 
cross sectional area. The initial turbulence is expected 
to dampen and the flow may even laminarize under 
the influence of strong acceleration. Originally, Jones 
and Launder [2] developed the low Reynolds number 
K--E model for laminarization of sink flow in which a 
turbulent flow becomes laminar. The calculated heat 
transfer rates and skin friction coefficients are com- 
pared with experimental data (Stanewich and Metzger 
[24]) and results from the LS model 1231 in Figs. 4 and 

5, respectively. NM decreases continuously, reaching a 
fully-developed value, then increases just before the 
step at the start of the acceleration and thinned bound- 
ary layer. NM decreases rapidly after the step when the 
viscous sublayer is thickened and the flow is lami- 
narized due to a strong favorable pressure gradient. 
Finally, the flow recovers to the ordinary turbulent 
channel how. 

The peak Nusselt numbers on the upper surface 
near the position of the step increases with the step 
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FIG. 5. Skin friction coefficients for forward facing step flow at Re(D,) = 18 000 and h2/h, = 0.496. 

height because the flow accelerates more (acceleration 
parameters, 

which is determined by average velocity variation 
around the step, are 3.4, 21, and 71 x 10m6, respec- 
tively). The present model predicts well the strong 
accelerating flow with laminarization. The LS model 
shows that the flow goes laminar then quickly return 
to turbulence. Jones and Launder’s [3] numerical 
results also show that the turbulent flow starts earlier 
than found in the experiments for pipe and channel 
flows. The Nusselt numbers have a wide variation 
among the models despite the similar skin friction 
coefficients. 

As examined in several flows, the present model 
accurately predicts the flow patterns and heat transfer 
rates. Increasing the Reynolds number, at high vel- 
ocity flow, causes the numerical model values to show 
some discrepancy with experimental data. In general, 
the low-Reynolds-number K--E model is not suitable 
for high Reynolds number flow because there should 
be several grid points inside the viscous sublayer, 
which is numerically difficult at high Reynolds number 
flow due to the thin viscous sublayer. 

NUMERICAL CALCULATION FOR ASYMMETRIC 

FLOWS 

The two-dimensional flow through an array of nor- 
mal flat plates is a fundamental problem for fluid flow 
and heat transfer. This kind of geometry is found in 
many systems, such as heat exchangers, a cascade of 
columns, and an array of slit jets. Recently, Milos et 

al. [25] calculated the velocity field for steady flow 
past a sudden cascade expansion (only downstream 
flow of the cascade) for laminar flow up to a Reynolds 
number of Re(S) = 1000. This showed the wake 
region length increases linearly with Reynolds 
number. The steady two-dimensional flow through a 
uniform cascade of flat plates was studied numerically 
by Ingham et al. [26]. Both papers dealt with low 

Reynolds number and assumed laminar flows. They 
also took the calculation domain between two geo- 
metrically symmetric lines as small as possible to 
reduce the calculation domain. This meant they 
always could get symmetric solutions. 

Asymmetric streamlines for the flow past an array 
of circular cylinders were calculated by Singh et al. 

[27] with the distorted centerline of the cylinders. 
Ciofalo and Collins [19] got an asymmetric flow for a 
symmetric sudden expansion duct with the perturbed 
inlet boundary velocity profile, which was a small 
sinusoidal antisymmetric disturbance. The flow past 
a row of flat plates is similar to flow in a symmetric 
sudden expansion duct. The asymmetric flow in a 
symmetric sudden expansion duct is a well-known 
phenomenon. Similarly, the flow behind a row of cylin- 
ders has asymmetric wakes and streamlines. Flow visua- 
lization shows the asymmetric flow pattern for the flow 
around an array ofrectangular cylinders (Cho et al. [28]). 

The Navier-Stokes equations are nonlinear, so mul- 
tiple solutions are possible. Also, asymmetric flow 
is possible in spite of the symmetric geometry and 
boundary conditions. A solution is shown in Fig. 6 
for wake sizes behind an array of the rectangular 
cylinders. The stable asymmetric solutions exist only 
at high Reynolds numbers. One wake is much shorter 
than the other one. Both wake sizes are possible 
behind a cylinder, so there are two stable asymmetric 
solutions and one unstable symmetric solution. It is 
possible to get the asymmetric solutions in three ways. 
The first requires a slightly disturbed geometry (cf 
Singh et al. [27]) since no experimental geometry is 
perfect. In the second, a perturbed inlet boundary 
velocity profile is considered, as shown in Ciofalo’s 
[19] calculation. These two methods are not designed 
for exactly symmetric geometry and boundary con- 
ditions. Finally, the initial velocity condition of the 
domain can be perturbed while keeping the symmetric 
geometry and boundary conditions. This condition 
exists naturally for example when a wind tunnel starts. 
For a given problem, the three approaches obtain 
essentially the same solutions for velocity profiles and 
local Sh/Nu on the cylinder surfaces. 
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FG. 6. Sizes of wake behind a row of rectangular cylinders (in streamwise direction) 

Two-dimensional symmetric sudden e.upansion duct 
jlOM' 

Durst et al. [29] found a symmetric velocity profile 
for a Reynolds number of Re( iY,) = 56 and an asym- 
metric velocity profile for a Reynolds number greater 

than 114. The velocity distributions at the Reynolds 
number of 114 matched very well with the present 
model. The numerical solution predicts another sep- 
aration bubble after the reattachment of the main 
stream on the side wall with a smaller wake at a 
Reynolds number of 250 (Fig. 7). The measured vel- 

ocity profile did not show a bubble, but, as they men- 
tioned, the shifted center of mainstream velocity and 
the flow visualization looks similar to the numerical 
results with respect to the separation bubble (Fig. 7). 

Another comparison is made with Filetti and Kays’ 
[30] measurements at a higher Reynolds number and 
with turbulent flow. The calculation domain uses the 
whole flow domain, not half of the domain even 
though it is a symmetric geometry about the centerline 
of the channel. The Nusselt number distributions on 
both long and short wake surfaces agree with exper- 
imental data (Fig. 8). The reattachment points of the 
present numerical model are almost the same as the 
experimental values. The profiles in Fig. 8 show 
differences in part because the maximum Nusselt num- 
bers occur just before the reattachment points in the 
numerical calculation while Filetti and Kays [30] 
found the maximum heat transfer just after the re- 
attachment. Some differences in the Nu inside the recir- 
culation zone are attributable to the three-dimensional 

flow just after the step in the experiment. The numeri- 
cal model predicts a small counter-rotating zone inside 
the recirculation zone for the assumed two-dimen- 
sional flow. 

Flow through an array of two-dimensional rectangular 
cylinders 

In the considered array of rectangular cylinders, the 
width of the rectangular cylinder is twice the slit width 
(spacing between the cylinders) and the thickness of 
the cylinder is chosen as 1.43 times the width of the 

slit (same as the experimental condition in Cho et al. 
[28]). The calculation domain is selected from the 
centerline of one cylinder to the centerline of the 
neighboring cylinder so that it includes one complete 
slit between them. As mentioned before, the half 
domain, which is the smallest possible geometrically 
symmetric domain, gives incorrect results (always 
symmetric solutions). To verify the selected domain, 
a double size control volume. including two complete 
slits, was tested and yielded the same results as the 
previous one. Three different perturbations, a small 
difference in size of the cylinders, a disturbed inlet 
flow boundary condition, and a sinusoidal perturbed 
initial velocity condition of the downstream part of 
the cylinders, were used and all yielded almost the 
same results for a test problem. After this, the last 
perturbation method was used. 

A stable symmetric flow exists for a low Reynolds 
number of about 20. The symmetric solutions can be 
obtained numerically at Reynolds numbers of 50 and 

Fro. 7. Streamlines for two-dimensional symmetric sudden expansion duct flow at Re(H) = 250 and 
IV/W, = 3 (numerical). 
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FIG. 8. Nu(D,) distributions for two-dimensional symmetric sudden expansion duct flow at Re(D,) = 
70 000 and W/W, = 2.125. Comparison of present model with experiments [30]. (a) Long recirculation 

side. (b) Short recirculation side. 

100, but these go to asymmetric patterns and remain 
stable with a small perturbation. The length of wakes 
in the symmetric flow is between the lengths of shorter 
and longer wakes in the asymmetric flow (Fig. 6). 
A bifurcation point would be between the Reynolds 
numbers of 20 and SO. The symmetric solution did not 
exist numerically for the higher Reynolds numbers ; it 
diverged and oscillated. The steady asymmetric solu- 
tions only exist to Re, = 300 with one short wake and 
one long wake. With increasing Reynolds numbers, 
the flow becomes turbulent with the asymmetric 
pattern. 

The wake sizes increase with Reynolds number in 
symmetric flow patterns such as the wake size fol- 
lowing a single step in the laminar regime. In asym- 
metric flows, the sizes of the short wake change slightly 
with Reynolds number, but the long wakes increase 

continuously in the laminar flow regime until Reyn- 
olds numbers of 300. Then the long wake size 
decreases, and finally remains the same size at the 
Reynolds numbers of 1500 and 3000 in turbulence 
regime (Fig. 6), much like that for single step flows. 
From smoke wire visualization (Cho et al. [28]), the 
wake sizes are similar at Reynolds numbers of 1500 
and 3000. The stream and/or streak line patterns 
match very well in both numerical and experimental 
results as shown in Fig. 9(a) and figures in ref. [28], 
respectively. The constant temperature contours (or 
constant density lines) show that most of the tem- 
perature changes occur in the near wall region (Fig. 

9(b)). 
Different grids, 78 x 44, 115 x 70, and 140 x 90, are 

used to verify the grid independence of the solution at 
Reynolds number of 1500. The Sherwood numbers 
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FIG. 9. Flow around an array of’ rectangular cylinders at Re(S) = 1500. (a) Streamlines. (b) Constant 
temperature contours. 

on the upstream-facing surfaces are identical on the 
neighboring cylinders as expected for symmetric flow 
(Fig. lo), and these values do not change with the 
grid density. The Sherwood numbers on this surface 
compare well with the experimental results. The Sher- 
wood numbers increase from the center to the sides 

due to acceleration of the flow and thinning of the 
boundary layer. 

The Sherwood numbers on the inside surfaces 
changed and converged to the experimental result with 
increasing grid density. If the asymptotic method sug- 

gested by Churchill et ui. [31] is applied, the present 
results would be even closer to the experimental data. 
The different sizes of the separation bubble and reat- 
tachment give different Sherwood numbers between 
two cylinders (Fig. 10). The largest discrepancy comes 
from the inside surface of the shorter wake cylinder 
due to the earlier reattachment point predicted 
numerically than found experimentally. There is a 
good prediction on the inside surface of the longer 
wake cylinder in which the flow does not reattach on 
the inside wall. The flow is laminar in most of the 
region and becomes turbulent at the end of the inside 
slit based on turbulent viscosity compared with lami- 
nar viscosity. 

The Sherwood numbers on the leeward surfaces 
change a little from grid number 115 x 70 to 140 x 90. 

The peaks at the centerlines are due to the impinge- 
ment effect of the recirculation in the wakes. The Sher- 
wood number on the surfaces match fairly well with 
experimental data (Fig. 10) except at the end corner 
for both values of Rr, which would be affected by 

the different upstream flow conditions (the different 
reattachment point inside slit, numericahexper- 
imental). 

CONCLUSION 

A low-Reynolds-number K--C turbulence model 

has been developed to improve local heat transfer 
prediction in separated flows. The present paper also 
considers the asymmetric flow pattern due to insta- 
bility in symmetric geometries, including a two-dimen- 
sional sudden expansion duct and an array of the 
rectangular cylinders. The model successfully predicts 
fluid flows and heat or mass transfer rates on the 
surfaces in several flow problems over a large Reyn- 
olds number range. However, the numerical pre- 
diction shows some variation from the experimental 
results at high Reynolds number. This could be due 
to the coefficient off, which connects the fully tur- 
bulent flow to the wall where a molecular viscosity 
influences the turbulent structure. Another reason 
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FIG. IO. S/r(p) distributions for an array of rectangular cylinders at Re(S) = 1500 : comparison of present 
model with experiments of Cho et al. [28] 

might be the assumption for the turbulent Prandtl 
number near the wall which depends on local Reyn- 
olds number ; sometimes the turbulent Prandtl num- 
ber may be bigger than unity. These will be examined 

in a future study. 
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